\(\int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx\) [630]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 274 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=-\frac {4 (a-b) b \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^3 d}+\frac {2 \sqrt {a+b} (a+2 b) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^2 d}+\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/3*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/a/d/cos(d*x+c)^(3/2)-4/3*(a-b)*b*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(
1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d
*x+c))/(a-b))^(1/2)/a^3/d+2/3*(a+2*b)*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2)
,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 274, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2881, 3077, 2895, 3073} \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=-\frac {4 b (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{3 a^3 d}+\frac {2 \sqrt {a+b} (a+2 b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{3 a^2 d}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[1/(Cos[c + d*x]^(5/2)*Sqrt[a + b*Cos[c + d*x]]),x]

[Out]

(-4*(a - b)*b*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x
]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*a^3*d)
 + (2*Sqrt[a + b]*(a + 2*b)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d
*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*a^2*
d) + (2*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(3*a*d*Cos[c + d*x]^(3/2))

Rule 2881

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2
- b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])
^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m +
n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||
 !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 \int \frac {-b+\frac {1}{2} a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{3 a} \\ & = \frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {(2 b) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{3 a}+\frac {(a+2 b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{3 a} \\ & = -\frac {4 (a-b) b \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^3 d}+\frac {2 \sqrt {a+b} (a+2 b) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^2 d}+\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 9.65 (sec) , antiderivative size = 339, normalized size of antiderivative = 1.24 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 \left ((a-2 b \cos (c+d x)) (a+b \cos (c+d x)) \sin (c+d x)+\frac {8 \cos ^2\left (\frac {1}{2} (c+d x)\right )^{7/2} \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \left (2 b (a+b) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+a (a-2 b) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+b \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{(1+\cos (c+d x))^{3/2}}\right )}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \]

[In]

Integrate[1/(Cos[c + d*x]^(5/2)*Sqrt[a + b*Cos[c + d*x]]),x]

[Out]

(2*((a - 2*b*Cos[c + d*x])*(a + b*Cos[c + d*x])*Sin[c + d*x] + (8*(Cos[(c + d*x)/2]^2)^(7/2)*Sqrt[Cos[c + d*x]
/(1 + Cos[c + d*x])]*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*(2*b*(a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*
Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]
+ a*(a - 2*b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*El
lipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + b*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*T
an[(c + d*x)/2]))/(1 + Cos[c + d*x])^(3/2)))/(3*a^2*d*Cos[c + d*x]^(3/2)*Sqrt[a + b*Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1183\) vs. \(2(248)=496\).

Time = 13.14 (sec) , antiderivative size = 1184, normalized size of antiderivative = 4.32

method result size
default \(\text {Expression too large to display}\) \(1184\)

[In]

int(1/cos(d*x+c)^(5/2)/(a+cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/d*((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF(cot(d*x+c)-c
sc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)^3-2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(
d*x+c))/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b*cos(d*x+c)^3+2*(cos(d*x+c)/(1+c
os(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))
^(1/2))*a*b*cos(d*x+c)^3+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*Ell
ipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2*cos(d*x+c)^3+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+co
s(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)^2
-4*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*
x+c)/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)^2+4*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*
x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)^2+4*(cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2
))*b^2*cos(d*x+c)^2+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF(
cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)-2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1
/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)+2*Elliptic
E(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)*a*b*cos(d*x+c)+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/
2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2*cos(d*x+c)-cos(d*x+c)^2*sin(d*x+c)*a*b+2*b^2*cos(
d*x+c)^2*sin(d*x+c)-a^2*cos(d*x+c)*sin(d*x+c)+a*b*cos(d*x+c)*sin(d*x+c)-a^2*sin(d*x+c))/(1+cos(d*x+c))/(a+cos(
d*x+c)*b)^(1/2)/cos(d*x+c)^(3/2)/a^2

Fricas [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {1}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(b*cos(d*x + c)^4 + a*cos(d*x + c)^3), x)

Sympy [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {1}{\sqrt {a + b \cos {\left (c + d x \right )}} \cos ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate(1/cos(d*x+c)**(5/2)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(a + b*cos(c + d*x))*cos(c + d*x)**(5/2)), x)

Maxima [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {1}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), x)

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {1}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(1/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))^(1/2)),x)

[Out]

int(1/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))^(1/2)), x)